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a b s t r a c t

Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid

programs prompted, in large part, by recent state and federal mandates and financial incentives. It is

increasingly difficult to separate electricity use impacts of individual utility programs from the impacts

of increasingly stringent appliance and building efficiency standards, increasing electricity prices,

appliance manufacturer efficiency improvements, energy program interactions and other factors. This

study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid

programs and presents an agent-based end-use modeling approach that resolves many of the

shortcomings of traditional approaches. Data for a representative sample of utility customers in a

Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a

fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency

and smart grid program scenarios provides peak hour reductions one-third greater than the most

stringent smart grid program suggesting that reductions in peak demand requirements are more

feasible when both efficiency and smart grid programs are considered together. Suggestions on

transitioning from traditional end-use models to agent-based end-use models are provided.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Electric utilities and regulators face difficult challenges
evaluating new energy efficiency and smart grid programs
prompted, in large part, by recent state and federal mandates
and financial incentives. Utility programs are typically required to
be cost-effective; that is, to provide a future stream of financial
benefits for utility customers that are greater than total program
costs. However, it is increasingly difficult to separate electricity
use impacts of individual utility programs from the impacts of
increasingly stringent appliance and building efficiency standards,
increasing electricity prices, appliance manufacturer efficiency
improvements, energy program interactions and other factors.

Without careful scrutiny, utility programs are prone to the
same kinds of inefficiencies often found in other programs
designed to elicit certain consumer and firm responses. The
recent US ‘‘cash for clunkers’’ automobile program is a recent
example of a ‘‘free rider’’ problem where the program apparently
benefited primarily those who would have purchased a new
automobile without the program.1 This free-rider problem has
ll rights reserved.

5,000 of the nearly 690,000

tributable to the program
long been recognized as an issue that should be considered
in utility energy-efficiency program evaluation (California
Measurement Advisory Council, 2009; Environmental Protection
Agency, 2007) and an issue that is unevenly addressed in existing
energy efficiency studies (Energy Center of Wisconsin, 2009).

The interaction of related programs is of greater concern with
the growing focus on smart grid programs. Consider, for instance,
the difficulty of separating utility smart grid program impacts
from reductions in air conditioning loads that would have
occurred anyway because of federal appliance efficiency
standards, state building standards and utility customer voluntary
purchases of more efficient equipment.

No existing utility program analysis model provides a
comprehensive quantitative analytical framework consistent with
utility and regulator needs to evaluate and assess individual
utility efficiency and smart grid program impacts while
simultaneously taking into account the many other factors that
will determine future electricity use and hourly loads.
Development of such a framework is critical in effectively
achieving legislative, utility and regulatory goals as resources
applied to inefficient programs reflect a lost opportunity to invest
in more efficient programs.

This paper presents an agent-based end-use modeling
methodology as an analytical framework that can achieve these
objectives. The next section provides a summary overview of
existing methods for analyzing energy efficiency and smart grid

www.elsevier.com/locate/enpol
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program impacts. Section 3 describes the agent-based end use
model applied in this study while Section 4 presents example
analysis results for an example utility. The final section sum-
marizes the study.
2. Traditional program evaluation

Energy efficiency and smart grid program evaluations require
adjusting ‘‘gross’’ program impacts for free rider, spillover and
rebound effects to derive net program impacts (Environmental
Protection Agency, 2007; Vine and Jayant, 2000; Fels and Keating,
1993). Spillover effects reflect additional savings beyond the
program parameters such as behavioral changes prompted by
program participation that would not have occurred in the
absence of the program while rebound effects reflect additional
incremental energy use as a result of the reduction in the cost of
providing the energy-related services (e.g., reduction in thermo-
stat settings with more efficient air conditioners). Difficulties arise
in estimating both gross and net impacts. This discussion is
divided into two categories: (1) short-term energy impacts over a
period of several years and (2) future energy and hourly load
impacts over a longer time horizon.

2.1. Short term impacts: energy efficiency

Short-term energy-efficiency impacts are usually determined
with engineering-based analysis that multiplies either the
number of program participants by savings per participant or
the number of technologies by savings per technology
(see Environmental Protection Agency, 2007 for a nontechnical
description of program evaluation approaches). For example, a
rebate program for compact fluorescent lamps will provide
information on the number of lamps purchased with the rebate.
Typically, the difference in watts of incandescent and compact
fluorescent lamps of comparable lumen output is multiplied by an
assumed number of operating hours. Better estimates of operating
hours may be obtained with information on rebate applications or
with survey results from a sample of the participating customers.
Free-rider impacts are typically determined by surveying program
participants and/or appliance retailers.

Multivariate statistical analysis of longitudinal monthly billing
electricity use data including months before and after program
participation and/or analysis applied to both program participant
and nonparticipants can be used to estimate impacts for programs
that have measurable impacts on monthly electricity use
(e.g., Tiedemann, 2007; Pacific Northwest Laboratory, 1995).
While this conditional demand analysis can potentially estimate
spillover and rebound impacts, its application requires a great
deal of customer information to explain variations across
participating and nonparticipating households caused by factors
other than the program. In addition, correlation of program
participation with other variables that reflect participant behavior
more inclined to be energy-consciousness can bias program
impacts upward. Conditional demand analysis does not typically
address free rider impacts.

Challenges in statistical estimation along with limited
resources typically result in utility program analysis conducted
with the simpler and less resource-intensive engineering-based
evaluations with judgmental estimates used to reflect free rider,
spillover and rebound effects. EPA (2007) reports one utility
program estimate of 10% free riders and 14% spillover effects for a
net gain of 4% in the impact of the program. The extent to which
these and similar utility estimates reflect overly optimistic
program impacts is difficult to determine. However, a good deal
of anecdotal evidence suggests that net savings are considerably
smaller than gross savings. For example, a recent study of
Southern California Edison’s 2006–2008 Home Energy Efficiency
Rebate Program (Kema, 2009) found 66–73% of refrigerator,
whole house fan, and evaporative cooler participants said they
were ‘‘very likely’’ to have purchased the more efficient
equipment in the absence of rebates. Reported free rider levels
were 47–53% for the room air conditioner, pool pump, and cool
roof rebates. These responses suggest that free rider range from
about half to three-fourths of participants in this program though
these estimates may overstate free rider impacts because of
self-reporting bias.

Accuracy of utility-provided efficiency program costs and
benefits has been questioned for some time (Joskow and Marron,
1992); however, the first comprehensive study to provide
evidence that program costs may be considerably greater than
typically assumed was conducted by Rand Corporation
economists only recently (Loughran and Kulick, 2004). The
Loughran and Kulick study found the often-quoted 3–4 cents/
kWh energy efficiency cost estimate (Gillingham et al., 2004,
Fickett et al. (1990); Nadel and Geller, 1996), computed
by dividing utility-reported program costs by estimated
electricity savings, increases to 14.6–22.9 cents/kWh after
accounting for free-rider impacts. This study analyzed temporal
and cross-section variations in residential electricity use and
energy efficiency program expenditures for 324 utilities over the
1989 through 1999 period in a study for the US Department of
Energy. While Auffhammer et al. (2008) have criticized these
conclusions, their argument rests on the fact that confidence
intervals around the point estimates are so large that the
utility-reported savings of 2–3 cents/kWh cannot be rejected.
However, these results also reinforce the view that
utility-reported data are of questionable accuracy.

2.2. Short term impacts: smart grid

Smart grid impacts in this paper refer to the impacts of smart
meters, smart grid enabling technologies such as programmable
communicating thermostats, utility pricing programs such as
critical peak pricing, conventional load control programs and
other communication and control technologies and programs
instituted by utilities to reduce electric demand during peak
periods. Short term smart grid impacts are typically evaluated as
percentage changes or elasticities based on pilot programs. A
small number of pilot studies have been completed to date
reflecting a wide range of responses for smart grid technologies
and peak period pricing (Faruqui and Sergici, 2009). Free riders
are a relatively small problem with smart grid programs as most
customers do not reduce peak period electricity use in the
absence of smart grid technologies and pricing programs;
however, estimating population impacts based on a customer
sample is subject to sampling error, especially if sample
customers have been treated differently (e.g., personal contacts
and motivation) than the population of customers.

2.3. Future impacts: energy efficiency

Future energy and hourly load program impacts are much
more difficult to predict and coincidentally much more important
in determining program cost-effectiveness. Most energy efficiency
programs and all smart grid programs require savings benefits
over a fairly long period to achieve cost effectiveness. For
example, the program life of a compact fluorescent lamp (CFL)
give-away program is determined by the lamp lifetime. With a
10,000-h life and an average 4-h use per day, the lamp will
continue to provide benefits for nearly seven years.
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2 The link between program evaluation and implementation is critical in

achieving program goals (Vine, 2008).
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Energy efficiency program cost/benefit analysis is formally
conducted by summing savings over each year of the program and
comparing future benefits to program costs. Future benefits are
discounted, that is reduced, by the factor 1/(1+r)t where r is the
discount rate and t the number of years in the future. Discounting
reflects the fact that future savings are worth less than current
savings. The CFL program described above would have a benefit
cost ratio of 2.1 if the cost of the lamp program were $6.00 per
lamp, the value of avoided kWh is $0.05/kWh and future benefits
are discounted at a 5% rate. However, if half of the CFLs purchased
by program participants would have been purchased in the
absence of the program, then the program becomes marginal,
providing about the same benefits as costs. If free riders are more
than 50%, the program is not cost effective.

In addition to accounting for free rider impacts, future utility
program benefits must be adjusted to reflect the impacts of
appliance and building standards and other factors that impact
electricity use in the future including energy price increases,
changes in income, new technologies, spillover effects and other
factors.

Traditional end-use models provide the only systematic
method for estimating future year free-rider and the other
complicating factors described above. End-use models were first
developed in the mid-1970s (Hirst and Carney, 1977; Jackson
et al., 1978) specifically to model and evaluate federal energy-
efficiency programs and have formed the methodological basis for
most policy-oriented energy forecasting models in use today
including, most notably, the US Department of Energy’s NEMS
model (US Department of Energy 2009a). End use models, some-
times referred to as ‘‘bottom-up’’ models determine electricity and
other energy use for detailed customer/end-use segments and sum
energy use across segments to determine total utility, state and
regional energy use. The following equation is a typical ‘‘demand
equation’’ used to estimate electricity use (kWh) for the single
family/central air conditioning segment (SFCAC). Electricity use is
represented as the product of the number of single family air
conditioning customers (CUST), average base year single family/
central air conditioner kWh use (UEC) and factors that, over time,
reflect changes in equipment utilization (U), efficiency (E) and
dwelling unit thermal efficiency (TE).

kWhðSFCACÞ ¼ CUSTðSFCACÞ�UECðSFCACÞ�UðSFCACÞ�EðSFCACÞ�TE

ð1Þ

The U, E and TE variables begin the forecast period with values
of 1.0 and change to reflect new values in future years as
appropriate. Efficiencies change as equipment fails and is replaced
with more efficiency equipment and as new dwelling units are
added to the stock. Utilization, the intensity of use of equipment,
changes in response to weather, electricity prices, income and
other factors. The thermal index of the building is determined
during construction and can be modified by adding insulation and
other building shell measures.

Values of the individual components of the basic demand
equation are forecast separately and multiplied to estimate
dwelling unit/end-use segment electricity use. Utilization indices
are forecast based on historical customer responses to increase in
energy costs, usually with a short-run elasticity representation.
Efficiency index values are typically forecast with a representation
of available technology efficiencies and a technology choice model
component. Most end-use modeling applications recognize sub-
optimal residential efficiency investment choices by applying
high discount rates or low payback requirements. Other factors
that deviate from the ‘‘rational actor’’ model can also be
incorporated in the efficiency choice model component.

Values of forecast end-use model components can often be
applied to estimate adjustments to engineering and statistical
program impact estimates to account for free riders, other
‘‘naturally occurring’’ efficiency improvements and other extra-
program factors. For example, efficiency choice estimates of
compact fluorescent lamp purchases can be used to estimate the
fraction of compact fluorescent lamps that would have been
purchased in the absence of a utility incentive program.

Alternatively, individual program impacts on utilization (U),
efficiency (E), and thermal efficiency (TE) can be incorporated
explicitly in the end-use models and compared to baseline
forecasts to estimate program impacts.

The problem with this approach is that the endogenously
determined efficiency increase represents an average for all
single-family/central air conditioning households while efficiency
programs typically impact significantly different subsets of
customers within each model segment. For example, participants
in an air conditioner rebate for old systems and participants in a
free programmable thermostat program are likely to reflect
different dwelling unit sizes, demographics and other character-
istics. Deducting the average efficiency and utilization improve-
ments for the single-family/central air conditioning segment from
each of these programs applies adjustments that are incompatible
with program participant customer characteristics. Incorporating
program impacts in the end-use models is equally problematic; U,
E and TE values must be adjusted to reflect segment subset
impacts on the basic dwelling unit/end-use segment value.

2.4. Future impacts: smart grid

Most utility-specific smart grid analyses have focused on
short-term pilot program results; consequently, little analysis has
been conducted of long term impacts. Longer term forecasts of
potential smart grid impacts have been conducted with aggregate
analysis at the national and state level (Walter et al., 2004;
Federal Energy Regulatory Commission, 2009); however, these
analyses apply elasticity-based models which are notoriously
unreliable when the structure of the economic system is under-
going significant change. None of these smart grid modeling
approaches allows joint consideration of energy efficiency,
appliance standards or other programs.

Based on these observations, one can conclude that many of
the limitations of traditional program evaluation approaches are a
result of a limited analytical focus and/or limitations of the
analysis tools.2 The end-use modeling approach provides a
comprehensive framework that conceptually can resolve these
shortcomings; however, the traditional aggregate customer
segmentation limits its applicability. Modeling individual utility
customer end-use electricity use for each household in a
statistically representative sample of customers can solve this
mismatch between model segments and utility program
representations. The advantage of the agent-based approach is
discussed in the next section.
3. Agent-based vs. traditional end-use modeling

The designation ‘‘agent-based end-use model’’ is used here to
reflect the fact that energy use is modeled at the individual agent
or household level and at the end-use level within each house-
hold. The same relationships involving end-use efficiency,
utilization and structure thermal characteristics applied in
traditional end-use models are applied here to each individual
utility customer in the utility customer sample.
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Table 1
Agent-based end-use model representation.

Household kWh ¼ UEC (kWh) n E Income ($)

Year t 1 3100 ¼ 3100 n 1.00 95,000

2 2400 ¼ 2400 n 1.00 21,000

3 1800 ¼ 1800 n 1.00 16,000

4 4200 ¼ 4200 n 1.00 170,000

5 1600 ¼ 1600 n 1.00 18,000

Average kWh 2620 Average E 1.00

Total kWh 13,100

Year t+1 household kWh ¼ UEC (kWh) n E % Change E

1 3100 ¼ 3100 n 1.00 0.0%

2 2400 ¼ 2400 n 1.00 0.0%

3 1080 ¼ 1800 n 0.60 -40.0%

4 4200 ¼ 4200 n 1.00 0.0%

5 1120 ¼ 1600 n 0.70 �30.0%

Average kWh 2380 Average E 0.86

% Change �9.2% % Change �14.0%

Total kWh 11,900

Year t+2 Household kWh ¼ UEC (kWh) n E % Change E

1 2790 ¼ 3100 n 0.90 �10.0%

2 2400 ¼ 2400 n 1.00 0.0%

3 1080 ¼ 1800 n 0.60 �40.0%

4 4200 ¼ 4200 n 1.00 0.0%

5 1120 ¼ 1600 n 0.70 �30.0%

Average kWh 2318 Average E 0.84

% Change �11.5% % Change �16.0%

Total kWh 11,590

Table 2
Traditional end-use model representation.

Household kWh ¼ Customers n UEC

(kWh)

n Average

E

Income

($)

Year t 1 13,100 ¼ 5 n 2620 n 1.00 95,000

Year

t+1

2 11,900 ¼ 5 n 2620 n 0.91 21,000

Year

t+2

3 11,590 ¼ 5 n 2620 n 0.88 16,000
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This approach is also characterized as a microsimulation
process because it simulates the behavior of individual economic
agents over time.3 Goett and Mcfadden (1982) developed an early
energy forecasting microsimulation model for the residential
sector in a project for the Electric Power Research Institute;
however, it was never applied for policy analysis. Jackson (1986,
1994) extended the traditional practice of modeling segment
average efficiency and fuel choice by incorporating microsimula-
tion modeling for a sample of households and firms in these two
components; however, individual samples were drawn for each
year and the results were averaged and passed back to the basic
demand equation which only partially resolves the dwelling unit/
end-use customer segment-efficiency program mismatch.

The agent-based end-use model applied in the current study
also belongs to a larger class of agent-based or multi-agent
models where individual agents can be influenced by other
agents. This feature is important in modeling new technologies
and utility programs that rely on dissemination of information
from one household to another. For example, the diffusion of new
technologies, such as solar photovoltaic systems, is driven in large
part by personal knowledge of other household experience with
the systems. This representation is easy to implement in the
agent-based methodology applied here, though its application is
outside the scope of the present study.4

Agent-based models are widely used in applications outside
the utility industry and reflect many of the extensions and
insights provided by experimental economics and other disci-
plines that are increasingly applying analytical frameworks that
more closely reflect underlying economic and behavioral relation-
ships important in public investment decisions. Application areas
include electric wholesale markets, health care, transportation,
and many others. See Tesfatsion and Judd (2006) for a compre-
hensive overview of agent based models and their applications.

Agent-based electricity end-use modeling methodology is
intuitive. The utility service area is represented by a sample of
utility customers. End-use equipment holdings, end-use electri-
city use and hourly loads along with income, demographic and
other variables characterize each customer. Each customer record
is updated in each year of the forecast to reflect changes in end-
use equipment efficiency and the impacts of changes in income,
demographics, electricity prices and other factors. Customers are
added to the sample to reflect growth in the service area over
time.

Conceptually the agent-based end-use modeling approach is
illustrated in Table 1 for a sample of five residential central air
conditioning utility customers. The utilization and thermal
efficiency terms are omitted from the basic equations to
simplify the example. In the base year, t, the efficiency index, E,
has a value of 1 for each agent or utility customer providing an
average value of 1.0. In year t+1, household number 3 and 5
participate in a utility low-income air conditioner replacement
program with a reduction of 40% and 30% in the efficiency index
for those two households where the differences reflect the age of
the replaced air conditioning system. In year t+2 household
number 1 replaces a worn-out air conditioner with a new more
efficient air conditioner. In each year energy use changes only for
3 Microsimulation models, originally suggested and most notably promoted

by Guy Orcutt (see Orcutt, 1957; Orcutt et al., 1976; and Orcutt et al., 1986).

Microsimulation models have been widely applied in government tax and social

program policy analysis (Halpin, 1999), transportation (Raney et al., 2003) and

other areas Gupta (2000).
4 See Jackson (2007) for a study that used commercial sector agent-based

modeling and a cellular automata information diffusion process to test the

hypothesis that high standby rates are inhibiting the implementation of combined

heat and power technologies.
those customers whose CAC efficiency changed and each change
is maintained for the customer until the equipment is replaced
again.

A comparison with the traditional end-use model representa-
tion of the example above illustrates the advantages of the agent-
based approach. Table 2 shows changes that occur with the
traditional single family/central air conditioner segment in the
three years.

The difficulty with this traditional representation is that the
average E can only be computed with the knowledge of the actual
kWh. In year t+1, Table 2 indicates that the average E value must
be 0.91 to yield the correct total kWh forecast, not the 0.86 that
represents the numeric average across all customers as shown in
Table 1. That is, because the efficiency index operates on the UEC
and because UECs vary by customer, the correct E value must be
weighted by UECs of the individual customers to provide a
weighted average E value that produces the correct forecast. The
same situation occurs in year t+2 and following years. This
example shows that the end-use energy use diversity of
individual utility customers significantly impacts utility program
savings and that ignoring this diversity provides erroneous
program savings estimates.

This algebraic weighting-aggregation issue is secondary,
however, to the basic problem of determining the correct E, U

and TI values in the absence of detailed customer data. Actual
kWh from Table 1 is divided by 13,100 determined (5 times 2620)
to determine the correct average E in Table 2. In actual
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Table 3
MAISY agent-based end use model methodologies.

Relationship/Program Methodology Variables

Equipment efficiency and

fuel choice

Discrete agent (residential households) equipment/fuel

choice models applied during equipment new purchase

and replacement

Equipment operating cost (efficiency and energy

prices), initial

cost, agent payback requirements distribution, utility

and other incentives and program variables

Equipment utilization Behavioral-based econometrically estimated

short-run elasticities

Operating cost (efficiency and energy price), income,

demographics, weather

Equipment replacement Replacement with new equipment when

equipment fails

Lifetime distributions, accelerated by utility incentive

payments and other cost-related factors

New construction,

demolitions

Age-determined demolitions, new construction to

meet forecast residential customers

Total residential utility customers, age-related

demolition distributions,

historical dwelling unit type distributions

Household income,

demographics changes

Adjustments to agent weights to reflect changes in

demographic and income

Forecast income, demographics

Energy price changes Changes equipment fuel choice, efficiency choices for new

equipment, utilization of existing equipment

Electric, natural gas, fuel oil prices, equipment

operating costs

Equipment and building

efficiency standards

Limits menu of choices in discrete choice models to include

only standards-compliant equipment

Minimum appliance and dwelling unit

requirements

Efficiency programs Impacts fuel and efficiency choices, and utilization Purchase incentives, monthly operating cost

incentives, other financial incentives,

program participation

Demand response/smart

grid programs

End-use load smoothing and reduction, additional

behavioral utilization impacts for peak period pricing programs

Agent end-use hourly loads, direct load control

characteristics, enabling technology characteristics,

peak period prices, program participation
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applications, knowledge that 2 of the 5 customers participated in
the program with 40% and 30% reductions is insufficient to
calculate the true E value without information on the individual
UECs. Knowledge of individual UECs is required to determine 0.91
as the correct value. However, if one has all of this information,
why not simply model energy use at the agent level rather than
aggregating to averages to be applied to the segments?

The problems associated with determining segment averages
in traditional end-use models become even greater when
utilization and thermal efficiency terms are considered in the
demand equation. The unavoidable conclusion is that information
required to accurately reflect detailed utility efficiency and smart
grid programs is consistent with the information required to
support an agent-based end-use modeling methodology.

The end-use model applied in this study includes end-use
hourly loads for each customer record. Changes in efficiency,
utilization and thermal efficiency are applied directly to end-use
loads providing a direct representation of efficiency and smart
grid programs.

The next section describes modeling relationships applied in
agent-based utility modeling application at a mid-west US electric
utility.
4. Agent-based end-use modeling relationships

In addition to resolving difficulties in determining traditional
end-use model segment averages, this agent, or utility customer,
approach provides direct access to all customer detail required to
represent and assess utility efficiency, smart grid and other utility
program impacts.

As indicated above the agent-based end-use modeling ap-
proach applied in this study, this modeling approach develops
information on a sample of utility customers and updates that
information over time as the number of utility customers
increases, as customers replace worn-out equipment and pur-
chase equipment for new dwelling units, as customers respond to
changes in electricity and other energy prices, income and
demographics and other factors, when dwelling unit thermal
characteristics are updated and so on. In other words the model
simulates actual energy use of a representative sample of
customers within a utility service area over time.

These relationships are summarized in Table 3. This study
reflects a departure from past efforts by integrating each of these
modeling relationships in a single comprehensive agent-based
energy-modeling framework.

As indicated in the table the model’s framework explicitly
represents energy efficiency programs, smart grid programs,
appliance and building standards and other extra-market efforts
to reduce energy use and peak demands.

Efficiency standards act to remove equipment and building
options from the menu of choices changing efficiency and fuel
choices and end-use energy use. Modifying the purchase cost or
other characteristics of equipment and building options through
utility or other efficiency incentive programs changes the
efficiency and energy use outcomes of household choices as well
as utilization of the new equipment to reflect the rebound impact.

Smart grid programs are modeled at the customer level by
smoothing individual central air conditioner and water heating
hourly loads over peak hours to reflect utility and customer-sited
control technologies and by additional reductions in electricity
use based on price responsiveness revealed in pilot pricing
programs. The peak hour impacts of other appliance-specific
programs such as electric clothes dryers, refrigerator defrosting
and so on can also be represented. This smart grid analysis
provides a more reliable estimate than aggregate elasticity-based
estimates typically used to evaluate smart grid potentials because
estimated hourly load reductions are based on actual end-use
equipment information, including end-use hourly loads, in
individual households in the service area.
5. Example utility application

The Duke Energy Indiana service area was selected as a case
study application to illustrate the agent-based analysis. The
example analysis shown here focuses on residential customers.
Duke Energy was not involved in this study and all information on
Duke customers used in this study is available in public sources.

Duke Energy Indiana provides electricity to approximately
675,000 residential customers in 69 counties in the central, north
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central, and southern parts of the state. Duke Indiana customers
will experience a 20% rate increase over the next five years to pay
for a new coal gasification plant now under construction. Duke
Indiana provides a number of energy efficiency programs (http://
www.duke-energy.com/indiana/savings.asp); however, these
programs have a limited impact. Duke’s estimate of all energy
efficiency program impacts is a reduction of 1.6% in residential
electricity use in 2007 (US Department of Energy, 2009b).

A sample of 1350 Duke Indiana residential customers includ-
ing their electricity use, hourly loads, income, demographics and
so on was applied in this study. Weights are applied to each
sample customer to reflect the number of customers represented
in the service area population. These weights are calculated with
US Census data for the utility service area (US Census Bureau,
2009). Individual customer data were drawn from the 2001 and
2005 Residential Energy Consumption Databases (US Department
of Energy, 2009c). These customer data provide dwelling unit,
appliance, demographic, annual electricity use detailed by end
use, and other information for individual sample customers. This
study developed hourly electric use profiles for each end use that
were calibrated to reported end-use electricity use.

Seventy-four percent of Duke residential customers live in
single-family dwelling units with 18% in multifamily units and 8%
in mobile homes. Electricity use by end use is shown in Fig. 1. In
2008, the average Duke Energy Indiana residential customer used
13,785 kilowatt hours (kWh) of electricity, 23% more than the US
average. This greater use reflects greater average air conditioning
and electric space heating saturations as well as historically low
electricity prices. The average US residential electric price was
11.36 cents/kWh in 2008 compared to 8.79 cents/kWh for Duke
Indiana customers. In 2000, the average US price was 8.24 cents/
kWh compared to the Duke Indiana price of 6.34 cents/kWh in
2000.

The remainder of this section provides forecast scenarios for
several energy efficiency and smart grid program target analyses
to illustrate agent-based model applications. A residential
customer growth rate of 1.2% was used in the forecast period,
consistent with the 1998–2008 growth rate. A discussion on the
use of agent detail for program marketing is also included in this
section.
Space Heating
18%

Lighting
8%

Water Heat
7%

Air Conditioning
17%Cooking

2%

Refrigeration
8%

Freezers
3%

Cloths Dryers
4%

Miscellaneous
32%

Dishwasher
1%

Fig. 1. Duke Indian residential electricity use by end use.
5.1. Efficiency program potentials

Most energy efficiency program potentials are determined
with engineering analysis applications where average current
efficiencies and technology characteristics are assumed and
technical, economic or achievable potentials are determined by
efficiency improvements that are technically possible, economic
or can potentially be achieved with utility programs.

Technical potential analysis is not terribly useful for program
analysis since it assumes that the most efficiency end-use
equipment will be used, regardless of costs. Economic potential
analysis results are also of limited use since households have a
well-recognized reluctance to invest in energy efficiency equip-
ment. Achievable potential is relevant to utility program devel-
opment since it presumably identifies how much efficiency and
smart grid programs can actually save in kWh or peak demand.
Achievable potential estimates typically reflect the extent to
which utility programs can modify efficiency and behavioral
choices based on either past program experience or assumptions
about how programs change household choices and behavior.

The agent-based model also supports another approach to
evaluate an achievable potential determined by the existing
distribution of end-use energy-use characteristics. After adjusting
for household size, or in the case of air conditioning and space
heating, dwelling unit size, the distributions of existing end-use
energy use provide useful targets for what can be achieved with
utility efficiency programs.

This distribution approach is similar to targets provided by the
US EPA and DOE Energy Star program. A 75 percentile efficiency
target assumes that the entire population of residential customers
will achieve energy efficiency at least as good as the best 25% of
existing customers and a 50% target assumes that all customers
will meet or surpass the 50th percentile. These benchmark targets
are based on actual energy use characteristics of existing
customers and, consequently reflect targets that are, within
reasonable bounds, achievable for the entire population since
some customers have already achieved them.

Figs. 2 and 3 show five Duke Energy Indiana energy (MWH)
and peak demand (MW) forecasts provided by the agent-based
end-use model. The frozen efficiency forecast provides an
estimate of annual electricity use in GigaWatt hours (GWH) and
peak loads in MegaWatts (MW) over the next fifteen years
assuming equipment efficiencies and utilization remain constant.
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Fig. 2. Efficiency program energy use impacts.
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Fig. 3. Peak load program energy use impacts.
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Fig. 4. Smart grid peak hour forecasts.
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That is, in the absence of the impacts of appliance standards,
building standards, electricity price increases and so on. Under
this scenario annual electricity use increases at an annual rate of
2.3% and peak residential load increases at an annual rate of 1.3%.
This forecast scenario is included to show forecast of energy and
peak trajectories that could be expected if one were to ignore
structural changes currently underway.

The baseline forecast shows annual energy increases of 1.6%
and annual peak load increases of 0.6%. The reduction compared
to the frozen efficiency case is a result in large part of the 20%
electricity price increase that occurs through 2011 and the impact
of appliance and building efficiency standards as well as voluntary
efficiency improvements.

The 25th, 50th and 75th percentile efficiency targets reveal
substantial additional potential for energy efficiency programs
with 1.1 and 0.3 and �1.7 annual percent GWH growth rates and
0, 2,�0.4 and �1.2 annual percent MW growth rates. The 25th
percentile efficiency target requires reducing electricity use only
of those 25% of customers with the most electricity use per end
use, adjusted for household size and dwelling unit size which is a
presumably modest target. The 50th percentile target might be
considered comparable to an achievable potential since it involves
reductions in electricity use of customers in the 50th percentile to
the current average kWh/customer. The 75th percentile target is
roughly equivalent to achieving energy star energy targets for the
75% of least energy-efficient customers.
5.2. Smart grid program potentials

Two program participation rates were assumed in the smart
grid forecasts. A 20% participation was included as a reasonable
lower bound with a 50% participation reflecting something close
to a maximum achievable voluntary pricing program participa-
tion. Smart grid programs have little impact on energy use
(MWH) so only the peak demand (MW) impacts are shown here.

Fig. 4 shows five Duke Energy Indiana smart grid forecasts
provided by the agent-based end-use model. The frozen
efficiency, baseline, 20% and 50% participation scenarios and a
combination of the least stringent 25th percentile efficiency and
20% participation scenario. The smart grid 20% participation
scenario shows the impacts of a smart grid program that impacts
central air conditioning and water heating and includes peak hour
pricing incentives. It is assumed that participation grows to 20% in
the first ten years of the forecast and is maintained at 20% through
the remaining five years. The smart grid program reduces peak
annual growth to 0.4% and provides a total residential peak
demand reduction of 91 MW at the end of fifteen years.

The smart grid 50% participation scenario indicates that a
comprehensive smart grid program achieving 50% participation
by the tenth forecast year could reduce peak annual growth to
0.2% and reduce peak demand by 192 MW. The final scenario is
the 25th percentile efficiency target and the 20% smart grid
program participation rate. Peak demand reductions achieved
with the three scenarios are 91, 192 and 256 MW with growth
rates of 0.4, 0.2, and �0.1. These smart grid and smart grid/
efficiency peak demand savings reflect reductions of 3.7%, 7.7%
and 10.3% relative to the baseline forecast.

It is interesting to note that the combination of the two least
stringent scenarios, the 25th percentile efficiency target requiring
reduction of the most energy inefficient 25% of households to the
25th percentile and the 20% smart grid program participation rate
provide peak hour reductions 64 MW greater than the much more
stringent requirements of the 50% smart grid participation
program by itself.
5.3. Program interactions

One of the complicating factors mentioned earlier in this paper
is that of program interactions. Ignoring energy efficiency
program interactions in traditional program analysis can lead to
double counting. For example programs that provide free
programmable thermostats interact with high-efficiency air
conditioner rebate programs because savings from automated
thermostat settings will be less with higher efficiency air
conditioners.
�
 Since agent-based end-use models reflect individual
households, this interaction is automatically reflected. That
is, program-driven thermostat temperature reductions are
applied to air conditioner energy use and hourly loads which
will have been reduced if the household also participated in
the high-efficiency air conditioner rebate program.

�
 The interaction of related programs is a serious complication in

calculating benefits associated with smart grid program where
benefits are often required for a decade or more to pay the
large up-front costs of meters, an advanced metering
infrastructure, information technology costs, pricing program
development and marketing, and other program costs.
Most smart grid hourly load savings are provided by
technology-enabled and behavioral reductions in peak hour
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air conditioning electricity use. A reduction in smart grid
program participant air conditioning electricity use of 10% over
a decade as a result of equipment replacement and increased
electricity prices will reduce smart grid savings by the same
amount.
The frozen efficiency forecast above excluded appliance and
building standards, voluntary efficiency upgrades and electricity
price increases, all of which are incorporated in the baseline
forecast. Comparing efficiency and smart grid programs impacts
to the baseline forecast excludes those complicating factors;
however, evaluating these two programs individually and sum-
ming their impacts overstates savings if both programs are
implemented. For example, the combined peak load impact of
the least stringent 25th percentile efficiency program and the 20%
participation smart grid program is 8% less than the sum of the
two program impacts evaluated separately. This interaction effect
increases with increased efficiency targets and smart grid
program participation and when participation in the two
programs is correlated.
5.4. Program marketing

Fig. 4 illustrates the importance of smart grid program
participation. Most utilities report relatively small efficiency
program-related energy and peak demand reductions achieved
to date (US Department of Energy, 2009b) suggesting, at least in
part, relatively ineffective program marketing efforts. For example
Duke Energy Indiana reported a 2007 total electricity use
reduction of only 1.6% attributable to all current and past energy
efficiency programs.

However, the potential exists to significantly expand both
efficiency and smart grid program participation by applying
traditional marketing principles of segmenting markets based on
customer wants and needs, offering well-designed programs that
provide value to customers within the individual market
segments and actively marketing programs to individual
customers.

The utility customer-detailed nature of the model supports
this targeted marketing effort. Agent detail provides direct
evaluation and insight on energy efficiency and smart grid
program design. For example, Fig. 5 shows a majority of air
conditioning smart grid potential in income segments with
annual incomes greater than $50,000 while a majority of water
heating potential exists in households with annual incomes less
than $50,000.
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. 5. Air conditioning and water heating smart grid potentials by income

gory.
6. From traditional end-use models to agent-based end-use
models: the data issue

End-use modeling is now a well-accepted approach for
forecasting future electricity use and peak demands at the
national and utility level and for evaluating the impacts of end-
use specific energy-efficiency and other programs (Ameren, 2009;
US Department of Energy, 2009a, Emmrich, 2008; Kandel and
Kavalec, 2008; Swan and Ugursala 2009; Swisher et al., 1997).

Additional data development and modeling resource require-
ments are likely to be seen as a significant obstacle to the
transition from end-use models to agent-based models. A
traditional end-use model may require 30 prototype dwelling
unit/end use segments (e.g., 3 dwelling unit types, 10 end uses) to
model electricity use. Moving from 30 dwelling unit/end use
segments to 1000 or more individual households suggest an
exponential increase in data and model development and
resource costs. However, an agent-based modeling approach
reflects a straightforward extension of traditional end-use
modeling. The following steps describe a process that utilities
and regulatory agencies can apply to extend traditional end-use
models to an agent-based end-use modeling process.

6.1. Step 1. From 30 segments to 1000 agents

A traditional end-use model represents independent dwelling
unit/end-use customer segments. Moving to an agent-based
model requires information on each customer’s joint appliance
holdings. That is, in a traditional model, appliance holdings
information reflects the number of appliances in each segment;
however, in an agent-based model, the presence of each appliance
is required for each household. This information is typically
available in appliance saturation surveys conducted by most
utilities. If appliance saturation data are not already available, a
mail survey of customers can be undertaken for at a modest cost.

Each appliance saturation survey record can be used as an
individual sample household in the agent-based model with a
weight that identifies the number of customers each household
represents in the population. This information is ordinarily available
from the sample design used in the appliance saturation survey.

6.2. Step 2. Apply parameters and relationships and extend the

model software

If the same parameters and relationships used for the
traditional end-use models are applied to end-uses within each
household and the model calculation loops are extended to
incorporate 1000 (or more) households, results of the agent-based
model will, at this stage, be identical to results of the traditional
dwelling unit/end-use segmented model because the same
algebraic operations are being performed. In the agent-based
application, the calculations are performed for each household
and summed instead of being performed for the average and
multiplied by the number of customers. At this point, the
traditional and agent-based model analysis and forecasts provide
identical results. This equivalence is illustrated by considering
Eq. 2 in an agent-based representation below where HH(SFCAC)
has a value of 1 if the single family household has central air
conditioning and 0 otherwise and the summation occurs across all
households.
X

HHðSFCACÞ�UECðSFCACÞ�UðSFCACÞ�EðSFCACÞ�TE¼ kWhðSFCACÞ

ð2Þ

where UEC is single family/central air conditioner kWh use, U the
equipment utilization, E an efficiency index and TE the dwelling
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unit thermal efficiency. Since the UEC, U, E and TE parameters are
the same across households, the equation can be written as

UECðSFCACÞ�UðSFCACÞ�EðSFCACÞ�TE�
X

HHðSFCACÞ½ � ¼ kWhðSFCACÞ

ð3Þ

However, since
P

[HH(SFCAC)], the sum of the binary HH
variable equals the number of customers, CUST(SFCAC), we can
rewrite the previous equation as

CUSTðSFCACÞ�UECðSFCACÞ�UðSFCACÞ�EðSFCACÞ�TE� ¼ kWhðSFCACÞ

ð4Þ

which is the same as Eq. 1 presented earlier for traditional end-
use models.

6.3. Step 3. Differentiate customer characteristics

Section 3 of this paper illustrates the value of recognizing
variations in household electricity use characteristics and the
difficulties that such variations create in traditional end-use
model representations. Since monthly billing data are available
for customers included in the utility saturation surveys, estimat-
ing space heating and air conditioning electricity use for each
household with weather data is a straightforward statistical
application. Replacing segment average electric space heating and
air conditioning with estimated UECs now provides a significant
advantage relative to the traditional end-use model. At this point,
UECs for other end uses can be calibrated for individual house-
holds with additional information from the saturation survey
such as number of household members, size of water heater
and so on.

6.4. Step 4. Other extensions

The agent-based end-use model developed at the end of Step 3
provides program analysis advantages associated with agent-
based modeling relative to traditional dwelling unit/end-use
modeling described in earlier sections of this paper.

At this stage, the framework exists to expand the agent-based
model representations. For example, household information on
the age of the air conditioner, the age and size of the refrigerator
and other data typically available in customer appliance
saturation surveys can be used to infer current efficiency ratings.
Utility customer data from a variety of sources can be used; for
example, detailed information collected with in-home energy
audits can provide valuable information on end use equipment
and building shell characteristics.

6.5. Step 5. Matching model and data resources with analysis needs

The steps outlined in this section show that many of the
benefits associated with moving from a traditional end-use model
to an agent-based end-use model can be achieved with modest
extensions of existing end-use models and existing utility data
resources or modest data development activities. A variety of
issues have arisen in recent years that recommend these
modeling and data development activities. Increased emphasis
on promoting energy efficiency investments, concerns over public
policy cost-effectiveness, mandates to achieve energy efficiency
and peak load reductions, constrained electric utility transmission
and distribution systems and concerns over carbon reduction are
some of the most visible of these issues. Developing cost effective
strategies to address these new issues requires utilities and
regulatory agencies to improve modeling and analysis capabilities
to reflect the detailed nature of programs targeted to these areas.
Results of the Duke Energy example analysis presented above
demonstrate the ability of agent-based models to provide this
detailed analysis.

The incremental approach described in this section provides a
framework by which individual utilities and regulatory agencies
can match analysis objectives with model and data resource
needs to better address some of these increasingly pressing issues.
7. Summary

This study describes shortcomings in traditional analysis of
electric utility energy-efficiency and smart-grid programs. The
inability of these approaches to simultaneously address free
riders, appliance and building efficiency standards, electricity
price increases and other factors within a comprehensive
analytical framework limits their application in utility and
regulatory cost-effectiveness studies and in providing reliable
electricity use and peak demand forecasts.

An agent-based end-use modeling methodology which models
end-use energy use detail of a representative sample of utility
customers that is shown to resolve issues associated with these
traditional methods. Data for a representative sample of utility
customers in a Midwestern US utility are used to illustrate the
end-use modeling process. The agent-based model is applied to
forecast electricity use and hourly loads over a fifteen year
horizon. Energy efficiency targets are developed based on
achieving efficiency improvements for the most energy intensive
25%, 50% and 75% of households. Results show that reducing
energy use of the most energy intensive half of the population
holds electricity use roughly constant at its 2000 level while the
less stringent 25th percentile efficiency target maintains some-
thing close to current peak demand and generating capacity
requirements.

A central air conditioning and water heating smart grid
programs are specified and evaluated for programs with 20%
and 50% customer participations. 50% participation was deter-
mined to be necessary to keep future peak demand at current
levels.

A combination of efficiency and smart grid initiative for the
two least stringent scenarios, the efficiency program reducing the
most energy-inefficient 25% of households to the 75th percentile
target level and the 20% smart grid program participation rate
provides peak hour reductions 33% greater than the much more
stringent requirements of the 50% smart grid participation
program by itself. These results suggest that reductions in peak
demand requirements are more feasible when both efficiency and
smart grid programs are considered together.

Utility customer information provided by the agent-based
framework can provide useful insights to help market energy
efficiency and smart grid programs. Suggestions on transitioning
from traditional end-use models to agent-based end-use models
are provided.
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