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Abstract

New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize

waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide

significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility

discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and

inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the

characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP

technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the

model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths.

Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a

large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

While large combined heat and power (CHP) systems
have been used for decades in industrial, hospital and
university applications, recent technology innovations
permit smaller utility customers to self-generate all or a
portion of their own electricity onsite and to apply waste
heat from the generation process for thermal uses such as
space heating, water heating, and air conditioning. For
customers with appropriate hourly electric and thermal
loads, overall CHP system efficiency can reach 85 percent
compared to a maximum of about 50 percent for the most
efficient central utility generation plants and about 33
percent for the average US utility generation plant.1 CHP
systems improve the efficiency of the entire electric
e front matter r 2006 Elsevier Ltd. All rights reserved.
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generation system, reduce emissions and can provide
substantial reductions in utility customer energy costs.
Currently, the primary US market for new small-scale

CHP technologies is the commercial sector. A 2000 US
Department of Energy study found 74 Gigawatts (GW) of
technically feasible potential2 for commercial sector CHP
system installations representing about 12 percent of total
electric utility-owned capacity in the year 2000.
Recent standardization of utility interconnection re-

quirements, remote monitoring/control and guaranteed
service contracts are a few recent CHP market innovations
that facilitate CHP installations. Emission control tech-
nologies guarantee compliance with the most stringent
local requirements while CHP systems can provide
improved power quality and reliability compared to grid-
delivered power.
In spite of these developments, existing small US

commercial sector systems probably number no more than
2Technically feasible potential includes installations where a majority of

waste heat can be utilized with limited changes in existing building thermal

energy systems (e.g., space heating).
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several thousand (Jackson, 2005; DOE, 2000) and while
that number is increasing (Prabhu, 2002; NECHPI, 2005),
CHP systems appear to be making only modest inroads in
the market (NECHPI, 2005).

CHP proponents frequently identify high standby (or
backup) rates, charged by the local utility when CHP
systems are unexpectedly unavailable, as one of the
primary reasons for the slow adoption of CHP systems
(Jimison et al., 2004; Casten, 2003). A recent addition to
the literature (Firestone and Marnay, 2005) confirms the
important impact of standby rates in six New York utility
service areas.

While utilities are required to determine standby electric
rates based on cost, this process is complicated and
sometimes inconsistent with no agreed-upon methodology.
For example, state regulatory agencies require revenue
neutrality3 in designing standby rates; however, crediting
CHP customers for fixed cost savings associated with
generation and distribution would automatically increase
the allocation of additional fixed costs to non-standby
customers. On the other hand, the Federal Energy
Regulatory Commission (FERC), directs utilities to
incorporate utility savings associated with intermittent
demands in standby rate design. Consequently, utilities
typically have considerable discretion in setting standby
rates for incremental service required if the utility
customer’s CHP-generating system is not operating.4 This
rate-setting flexibility puts utilities in the position of
regulating competition from their own customers.5

Furthermore, revenue reductions resulting from cost-based
standby rates have an exaggerated impact on profits for
investor-owned utilities (Weston, 2000; Moskovitz, 2000,
Regulatory Assistance Project, 2000) and create rate
pressure for publicly owned utilities.6
3Once rates are set, revenue neutrality requires any change in the rate

for a single rate class to have no impact on revenue requirements of other

rate classes.
4Standby rates differ by utility primarily in ‘‘demand’’ charges (charges

for the maximum 15-min kW use in the month). Most utilities apply

‘‘ratchet’’ clauses that bill demand based on the maximum kW in the

previous year. Standard non-CHP demand charges typically range from

$6 to $9 per kW. Utilities who strive for revenue neutrality set standby rate

demand charges as close to standard demand charges as possible so that

even one unplanned 15-min system downtime in the year will recover lost

revenue. One utility, in recent years, set standby rates at more than double

the standard rate, which could have conceivably increased revenue from

CHP customers (LIPA, 2001). More recent standby rate setting practices

appear to set standby demand rates at approximately 50 percent of full

demand charges using a combination of capacity and use charges (e.g,

LIPA, 2004).
5Each utility is regulated by one or more agencies in its own state.

Consequently, this description includes some generalization. The local

distribution utility designs and applies standby rates and remains

regulated in all US states.
6Adoption of CHP technologies also reduces the utility’s generation,

transmission and distribution assets relative to a world without CHP. In

addition to the Averech-Johnson effect, which explains over-investment in

capital by regulated firms, a larger asset base reduces the relative impacts

of random negative influences on revenue such as weather and economic

fluctuations.
An equally compelling argument, however, can be made
that the slow adoption of CHP is characteristic of new
technology diffusion and a long-recognized reluctance of
firms to invest in energy-saving investments (Jaffe and
Stavins, 1994; Jaffe et al., 2001; DeCanio, 1998).7

The extent to which CHP diffusion is limited by current
regulatory practices as opposed to reflecting traditional
new technology diffusion has important policy implications
for the $239 billion US electric industry. CHP systems can
potentially offer a significant opportunity to improve
energy efficiency and reduce emissions. Encouraging this
resource through policy initiatives; however, requires
understanding the nature of current impediments, if any,
to the adoption of CHP technologies.
Unfortunately, lack of utility CHP data, nonstandard

interconnection fees, revisions in standby rates over time,
complicated nonlinear electric rate structures that differ by
utility and many other data difficulties prevent statistical
tests of these hypotheses.
The objective of this study is to develop an agent-based

microsimulation model of new CHP technology diffusion
that permits analysis of utility standby-rate setting practices
on the adoption of these new technologies. The remainder of
this paper is organized as follows: The next section provides
a brief review of relevant literature. Section 3 describes the
conceptual model and Section 4 presents an empirical model
specification. Section 5 describes analysis results. The final
section provides a summary.
2. Relevant literature

Empirically assessing the impacts of standby rates on the
diffusion of new CHP technologies requires a model
structure that can represent (1) detailed CHP technology
characteristics, (2) individual agent hourly electric and
thermal energy use heterogeneity, (3) agent decision criteria
heterogeneity, (4) detailed non-linear utility rate structures
and (5) the endogenous spread of information among
agents and agent knowledge accumulation.
The agent-based model developed in this study extends

traditional economic microsimulation-modeling to accom-
plish these tasks by including bounded rational agent
investment behavior and an agent-based process to represent
agent interactions and the dissemination of new technology
information. Relevant literature antecedents and modeling
considerations are described in the remainder of this section.
2.1. Microsimulation models

Microsimulation approaches have been applied to
accommodate the first four modeling issues above in
7Lee (2003) and others argue that customer-sited generation yields

limited value relative to attributes of grid-provided power and is likely to

serve only niche applications. As indicated in a later section, the analytical

approach developed in this study accommodates CHP attribute values as

positive and negative costs relative to grid power.
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energy sector applications since the early 1980s. (Goett and
Mcfadden, 1982; Jackson, 1986, and Jackson, 1994). US
state energy agencies and utilities have used these models to
analyze and forecast the impacts of detailed conservation
technologies and energy policies in both residential and
commercial sectors. Microsimulation models represent the
individual behavior of a sample of agents with the ability to
expand the results to determine impacts of population
segments as well as the entire population. The ability to
forecast and evaluate policies for any subset of the sample
of agents provides policymakers with a consistent, com-
prehensive framework for ex ante evaluation of social and
economic policies.8

CHP Microsimulation modeling applications have been
less robust. Most studies have addressed only technical
potential (DOE, 2000) or have used arbitrary investment
criteria (e.g., a 10-year payback requirement, DOE, 2002),
historical trends (CEC, 1999) and heuristic aggregate
representations (NYSERDA, 2002) to evaluate the CHP
market. While these CHP potential estimates provide
insight on long-run upper-bound estimates of potential
CHP penetration and energy savings, they are not useful in
assessing utility standby rate impacts.

2.2. Modeling agent CHP investment behavior

CHP technologies provide an opportunity to reduce
energy services cost by generating a portion of the
building’s electricity use and applying waste heat to
supplement space heating and other thermal building
requirements previously fueled with natural gas or oil.
CHP systems are typically integrated in existing space
heating, water heating, air conditioning, and other energy
systems and do not require early replacement of existing
energy-using capital.

Virtually all empirical analyses of actual energy-related
investments have found significantly larger implied dis-
count rates than can be explained by extending traditional
investment theory to include uncertainty with respect to
future fuel prices and equipment performance, unrepre-
sented transaction costs, the option value of delaying the
investments and other factors. The difference between
observed implicit discount rates and financing costs has
given rise to the so-called ‘‘energy paradox’’ (Shama, 1983)
which remains a critical unresolved issue in energy and
environmental analysis (Jaffe and Stavins, 1994; DeCanio,
1998).

The energy paradox is especially difficult to explain as
part of cost-minimizing behavior of firms,9 particularly
larger firms that presumably apply more sophisticated
investment criteria when considering energy-saving invest-
8Microsimulation models were originally suggested by Orcutt (1957).

See O’Donoghue (2001) for a survey of dynamic microsimulation

modeling applications.
9Most energy-saving investment studies focus on residential investments

in energy saving equipment. Ten studies of residential investments

documented in Train (1985) have an average implicit rate of 66 percent.
ments. A recent analysis of energy-savings investments in
industrial firms (Anderson and Newell, 2002) found that
even after detailed onsite engineering studies and cost-
benefit analysis, which presumably minimized information
cost and reduced uncertainty with respect to expected
savings, firms still exhibit an average implicit discount rate
of 75 percent.
A good deal of evidence indicates that firms do, in fact,

use criteria for energy saving and similar capital invest-
ments other than net present value or equivalent invest-
ment analysis. A variety of previous studies have reported
payback analysis as the predominant decision criterion
used by firms in considering energy-related investments
(Anderson and Newell, 2002; Lefley et al., 2003; Koomey,
1990, Kulakowski, 1999; Muller et al., 1995; DOE, 1996).
Related empirical evidence is provided in a study by Lefley
et al. (2003) that found 84 percent of financial decision
makers in large companies use payback analysis alone or in
combination with other investment criteria when consider-
ing advanced manufacturing technologies (i.e., computer-
controlled processes).
The fact that this group of decision makers, who are

undoubtedly aware of more sophisticated investment
analysis techniques, chose to use payback analysis is
consistent with a bounded rationality (Simon, 1955) view
of decision makers applying simpler decision rules when
faced with complicated investment decisions. Nelson and
Winter (1982) extended this view to include procedural
rationality based on firm-level learning over time and the
use of procedural rules to provide decision-making
continuity.
Minimizing model estimation and forecast error is

especially important in policy modeling applications;
consequently, agent CHP purchase decisions in this study
are based on individual payback criterion. That is, CHP
investment occurs when:

Initial Cost=Annual Savings oPBR; (1)

where Initial Cost is equipment and installation cost of a
CHP system, Annual Savings is the annual savings in
energy bills minus operating, maintenance and CHP
fuel costs, and PBR ¼ payback criterion applied by the
decision-maker (years).
The standard practice of applying a fixed corporate-

specific payback requirement to individual energy-savings
investments (Kulakowski, 1999) implies that a knowledge
threshold is achieved prior to the final application of the
payback analysis. Otherwise, decision-makers would use
different payback requirements to accommodate varying
levels of uncertainty or information available concerning
the individual investments. The cellular automata process
described in the next section is used to represent CHP
information dissemination and agent knowledge acquisi-
tion.
Since nearly all CHP utility customers have grid power,

even during unexpected CHP downtimes, the value of CHP
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10Optimization of engineering system design may seem incompatible

with a payback criterion that is ‘‘non-optimal’’ in a traditional investment

sense. The first represents good engineering and design practice while the

second represents, at least from the perspective of the firm making the

investment, good investment strategy for uncertain energy-saving invest-

ments.
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attributes relative to grid attributes are incorporated as
components of costs in the payback Eq. (1). Many of these
cost components (e.g., maintenance costs) have been
quantified in previous studies (e.g., DOE, 2002).

2.3. Information diffusion and knowledge acquisition with

agent-based cellular automata

Microsimulation models can be extended to accommo-
date the fifth requirement mentioned above (endogenous
spread of information among agents and agent knowledge
accumulation) by incorporating endogenously determined
agent-to-agent interactions and an agent knowledge
accumulation process. Agent-based models are increasingly
being used to explore micro foundations of many areas in
economics and other disciplines (Tesfatsion, 2003; Dawid,
2006).

The dispersion of new technology information is
recognized as a critical component in all models of new
technology diffusion. Most theoretical and empirical
models evaluate new technology penetration from an
aggregate perspective. For instance Griliches’ (1957) classic
model represents the spread of information as if it were a
disease spreading through the population. The seminal
Bass (1969) model reflects a sigmoid curve with, among
other parameters, a coefficient of imitation reflecting
interpersonal communication or social contagion.

Agent-based models permit a more detailed and a
potentially richer representation of the dynamics of
information dispersion. The endogenous spread of new
technology information from agent to agent is also
consistent with a contagion process that, at an agent level,
can be represented with as cellular automata (CA) process.
Developed in the late 1940s by Stanislaw Ulam and John
von Neuman as a model of self-reproducing systems, CA
has been studied and used extensively in disciplines ranging
from computer science to transportation planning. A
cellular automation consists of discretely identified spa-
tially arranged cells, each of which is characterized by a
state of nature. The system evolves dynamically over time
according to rules that define state changes for the
individual cells based on exogenous influences and changes
of state in other cells within a neighborhood. CA structures
provide an intuitive mechanism to represent the spread of
information from agent to agent and agent knowledge
accumulation. Current CA applications in agent-based
technology diffusion models tend to apply relatively
aggregate and abstract characterizations of information-
related cell states (Berger, 2001) or focus on theoretical and
methodological issues of the CA process itself (Strang and
Macy, 2001, Goldenberg et al., 2001). The model in this
study extends these previous applications by applying a CA
process to a microsimulation sample of individual agents to
model the dissemination of new CHP technology informa-
tion from one agent to another and to model agent
knowledge acquisition which eventually results in the
initiation of a purchase decision.
3. The conceptual model and a test of the standby-rate

hypothesis

3.1. Model process

The model developed in this study simulates CHP
investment decisions of each agent in a sample of
commercial, institutional and government establishments.
Hourly electricity, space heating, air conditioning and
water heating energy uses, a payback requirement and
availability of in-house energy expertise uniquely charac-
terize each of these microeconomic agents.
Each agent’s potential CHP system reflects an optimized

CHP design that sizes generator capacity (kW) and waste
heat applications based on the individual agent’s hourly
electric, thermal space heating, water heating and air
conditioning demands.10 The resulting system is character-
ized by an initial cost, annual maintenance cost, natural gas
cost and other operating costs. Annual CHP benefits
included avoided electricity costs and avoided natural gas
costs (now provided by waste heat).
Agents consider CHP investment only when they acquire

a threshold level of CHP knowledge. Each agent in the
model originally begins with a state of ignorance concern-
ing the new CHP technologies. A cellular automata (CA)
process is used to model information dissemination and
knowledge accumulation.
Each agent’s accumulation of knowledge is a function of

the level of its onsite energy-engineering expertise and
exposure to sales/CHP installation information. The CA
process moves each agent through individual states of a
knowledge acquisition process towards a knowledge
threshold. Once the threshold is reached, the agent
considers CHP as an energy savings investment compar-
able to other energy-saving investments.
Sales contacts are targeted to agents in individual

business segments that provide the greatest CHP potential
savings based on segment averages. Agents are identified as
belonging to neighborhoods consisting of agents of similar
size in the same business segment (see Table 1). Business
type segmentation is specified with respect to information
flows that occur within similar industries. This specification
is consistent with industry associations organized by
business type (e.g., American Hospital Association, Amer-
ican Restaurant Association). The number of agents
comprising a neighborhood within a business category is
parameterized as part of the study analysis.
Larger agents, measured by number of employees, are

contacted first. This representation reflects actual target
marketing currently conducted by CHP suppliers. Sales
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Table 1

Sample agent characteristics

Population Sample Square feet Peak kW Employees Annual kWh Weekly operating hours % Onsite energy manager

Office 2174 285 59,190 280 208 1,074,213 71 17.8

Retail 2306 73 17,046 61 14 232,756 79 11.5

Shopping mall 443 77 88,081 263 94 1,054,580 85 4.6

Grocery 1589 87 12,631 135 31 684,768 121 0.5

Warehouse 53 29 60,418 217 35 839,038 81 5.7

Refrig. warehouse 875 111 88,011 179 68 816,752 73 2.7

Assembly 526 70 39,329 162 40 507,819 85 2.9

School 943 107 54,774 146 102 348,455 55 3.6

Restaurant 2180 88 6592 79 31 301,230 97 0.7

Health 321 156 98,028 468 355 2,120,003 168 26.2

Hotel 246 63 37,669 180 22 674,236 166 13.2

Religious 113 17 29,777 56 42 153,867 64 0

College 139 93 76,475 311 102 1,181,173 88 13.8

Federal 108 75 49,130 274 95 1,025,806 98 7

State and local 801 177 51,341 195 75 777,352 94 5.2

Other 95 41 45,916 426 103 1,651,263 104 7

Population data reflects the number of utility customers in the population by business type. Entries in the sample column represent the number of utility

customers in the sample. All other data items are averages for the appropriate business categories. Both sample and population reflect commercial sector

electric customers in the LIPA service area with average daytime hourly electricity use greater than 20 kW.

CHP Break-Even Rates
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Fig. 1. Population distribution, f (x), of CHP standby break-even rates.

11For example, US Costs of the August 2003 Northeast blackout have

been estimated at between $7 billion and $10 billion (ICF Consulting,

2003).
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contacts to agents with onsite energy engineering capabil-
ities result in immediate attainment of the knowledge
threshold and a purchase decision using the agent’s hourly
energy use data and payback requirement. Agents with no
onsite energy management expertise are moved a single
step in the knowledge acquisition process as the result of
each sales contact. Additional sales contacts move agents
to the next knowledge acquisition state, up to one level
below the threshold. The observation of a neighbor’s CHP
installation is required for an agent with no onsite expertise
to reach the purchase decision threshold.

Each agent’s knowledge state increases with the installa-
tion of a CHP system in its neighborhood defined by the
same business type and similar size. The impact of a CHP
system installation results in an endogenously determined
‘‘spread’’ of the technology to other agents in the same
neighborhood. These ‘‘observed’’ technology installations
are the last step in knowledge acquisition required by
agents with no onsite engineering expertise.

The following three CA parameters define the diffusion
dynamics described above: (1) the number of knowledge
states, k, required to reach the threshold level, (2) the
number of agents in a neighborhood, p, and (3) the number
of sales contacts per year, s.

3.2. Evaluating aggregate diffusion impacts

The question addressed in this analysis is: To what extent
can discriminatory standby rates reduce the diffusion of
CHP technologies? While standby rates set at levels greater
than the cost of providing intermittent CHP-related service
undoubtedly reduce economic efficiency and energy
cost savings associated with CHP systems and inhibit
CHP diffusion, it is not clear how important this factor
is, especially in comparison to other inefficiencies and
problems that exist in the regulated electric utility
industry.11

The potential diffusion impact of an inflated standby
rate based on maintaining utility revenue, PsbR, is
illustrated in Fig. 1 where the population distribution of
CHP standby break-even rates is shown along with a cost-
based standby rate, PsbC and a standby rate of 0. The
distribution of utility customer energy use characteristics
yields a distribution of break-even rates that is approxi-
mately lognormal with utility customers to the right of any
standby rate achieving positive annualized CHP savings (or
a positive net present value). Utility customers to the left of
0 require a subsidy to achieve positive annualized savings.
We assume in this representation that the break-even
population distribution, f(x), represents all of the economic
factors associated with a CHP investment except the
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standby rate and that the capital recovery factor in this
representation reflects a social discount rate. It follows that

DðPsbRÞ ¼
R1

PsbR
f ðxÞdx is the long run maximum econom-

ically efficient adoption of CHP technologies under the

current rate, DðPsbCÞ ¼
R1

PsbC
f ðxÞdx is adoption under a

cost-based standby rate and Dð0Þ ¼
R1
0 f ðxÞdx is adoption

with no standby rate. Additionally, D(0)4D(PsbC)4D

(PsbR) . These economic potential estimates provide an
upper-bound estimate of potential CHP penetration and
energy savings in the long run; however, they do not reveal
the dynamics of new technology diffusion required to
compute the present value of costs and benefits. Since the
diffusion of new CHP technologies could conceivably take
a decade or two, diffusion dynamics can have a significant
impact on discounted cost/benefit analysis.

CHP market diffusion is a product of the maximum
economic potential D(.) and, g, the fraction of economic
potential achieved as a function of agent population
characteristics, a (including hourly energy use, payback
requirements, and CHP system characteristics), time, t, the
standby rate, Psb, and the three CA diffusion parameters
defined in the previous section: k, p and s. That is

mða; t;Psb; k; p; sÞ ¼ gða; t;Psb; k; p; sÞDðPsbÞ

¼ gða; t;Psb; k; p; sÞ

Z 1
Psb

f ðxÞdx, ð2Þ

where m (t, Psb1, k,p,s)4m (t, Psb2, k, p, s) g when Psb1oPsb2

and g(t, Psb1, k, p, s)4g(t, Psb2, k, p, s)p1.0.
The impact of excessive standby rates at period t in the

forecast horizon, given a current standby rate PsbR , a cost-
based rate PsbC, and diffusion parameters k, p, s, is

mða; t;PsbC; k; p; sÞ � mða; t;PsbR; k; p; sÞ (3)

represented as the vertical distance between the two curves
shown in Figs. 2 and 3. Fig. 3 shows a scenario with an
alternative set of diffusion parameters k, p, s (2).

The total direct economic cost imposed on CHP utility
customers and potential CHP customers (EC) is the
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Year
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Fig. 2. Diffusion process d1.
difference in the present value of the energy cost savings
under current standby rate PsbR , and cost-based rate PsbC.
given as

ECðTÞ ¼

Z T

0

½pða; t;PsbC; k; p; sÞmða; t;PsbC; k; p; sÞ�

�ða; t;PsbR; k; p; sÞmða; t;PsbR; k; p; sÞ�e
rt dt, ð4Þ

where p (.) is the average system energy cost savings and r

is the social discount rate.
These two figures illustrate that the economic costs

associated with excessive standby rates depend critically on
the underlying diffusion process. The reasonably speedy
diffusion in Fig. 1 shows a significant impact while the
diffusion process in Fig. 2 shows a much smaller total
impact because most savings occur in future years that are
discounted more heavily.
The model developed in this study provides ex ante

forecasts of market diffusion, m (a, t, PsbC, k, p, s), and
discounted energy cost savings, EC(T), as the sum of
individual agent technology installations. The difference in
the current standby rate and cost-based standby rate
scenarios depends on standby rates (PsbR, PsbC) and the
CA diffusion parameters, k, p, s.

The following section describes the methodology used in
this study to isolate the impact of standby rates from
impacts of the diffusion parameters as part of a formal
hypothesis test.
3.3. Testing the standby-rate hypothesis

Since values for elements of the CA parameter vector, k,
p, s are unknown in this ex ante application, we approach
the quantitative analysis as a field experiment. Our
experimental units or subjects are actual commercial utility
customers in a study area who accumulate knowledge
required to make a CHP investment decision according to
the CA process defined by the k, p, s parameter vector. The
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response variable is the discounted cost of excessive
standby rates. A factorial experimental design identifies n

treatment combinations of the parameter values that can
be applied with the agent-based microsimulation model.
For each parameter vector associated with one of the n

treatments, the model is simulated once with the current
standby rate PsbR and once with a cost-based rate PsbC to
determine net diffusion impacts of excessive standby rates
as indicated in (3) and (4).

In the spirit of an experimental approach, we specify a
null hypothesis, H0: Differences between current standby
rates and cost-based rates result in no significant costs to
utility customers. If all n experimental treatments show
insignificant impacts the null hypothesis cannot be rejected.
If treatment results are mixed, the analysis must turn to an
exploration of circumstances represented by CA parameter
vector values that lead to significant costs.

On the other hand, if all n treatments show significant
diffusion impacts, H0 can be rejected indicating significant
standby rate impacts on CHP diffusion in the study area.
In this case the n quantitative results will provide empirical
estimates of the likely range of costs.

As with other experiments, the validity of the results
depends on the design of the experiment and the extent to
which the experimental treatments isolate the relationship
of interest. In this case, the specification of the CA process
g must be consistent with actual information dissemination
and knowledge accumulation and the k, p, s parameters
must map CHP diffusion, m, onto all reasonable empirical
representations.
12Commercial utility customers were considered potential adopters only

if they used more than an average of 20 kW for each hour during the day.

This size includes office, retail and other commercial buildings larger than

about 10,000 square feet along with most high electric intensity establish-

ments such as restaurants and grocery/convenience stores.
4. Empirical model specification, input data and parameters

4.1. Application area

Inter-utility variations in rate structures, natural gas
prices and utility customer heterogeneity in electric and
thermal load profiles require utility-specific analysis of
CHP diffusion. The Long Island Power Authority (LIPA)
utility service area was selected as the application area for
this study. LIPA is a New York state authority that was
created to close the Shoreham Nuclear Power Plant. LIPA
took over LILCO, the Long Island utility that owned
Shoreham, in 1998 and now operates Long Island’s retail
electric system. As a public entity, LIPA does not earn
profits; however, it and other public electric utilities, apply
the same principles as investor-owned utilities in operating
their systems and designing customer rates. The service
area includes most of Long Island and serves a population
of 2.8 million (Long Island Power Authority, 2004). LIPA
is a ‘‘load pocket’’ with limited transmission capacity onto
the island. LIPA faces high marginal distribution costs,
chronic generating capacity shortfalls, reliability difficul-
ties, and moderate economic growth. LIPA could poten-
tially realize significant benefits from a more decentralized
energy delivery system.
4.2. CHP systems

Natural gas engine-driven systems, the most common
CHP system, are sized for each agent to provide optimal
outputs of electricity and thermal loads according to each
facility’s whole building hourly electric loads, air con-
ditioning hourly electric loads and hourly thermal loads for
domestic water heating and space heating. All data on
CHP systems was taken from a US Department of Energy
(DOE, 2002) study and included total installed cost,
operating and maintenance costs, air conditioning operat-
ing, maintenance and equipment costs and efficiency
characteristics for a variety of system sizes.
Agent valuation of grid attributes relative to CHP

attributes not included in the CHP cost items above should
be added to these costs. For instance, extended warranties
would provide an additional cost. Similarly, an agent’s
valuation of improved power quality would reflect a
negative cost. No quantitative information exists on the
valuation of these items; consequently, only the costs
included in the DOE, 2002 study are used to compute CHP
system costs. However, two alternative simulations are
included in the analysis to test the sensitivity of analysis
results to increased CHP cost estimates.
4.3. Utility customer data

Utility customer survey data from the US Department of
Energy’s Commercial Buildings Energy Consumption
Surveys (CBECS) for 1992 and 1995 were used to develop
a sample of buildings representing commercial utility
customers, or agents, on Long Island. Data were pooled,
and a proportional poststratification using US Commerce
Department (County Business Patterns, 2000) county-level
data on establishments by employee size categories was
used to develop a sample of 1549 buildings reflecting the
population of commercial buildings on Long Island
potentially suitable for CHP technologies.12 Characteristics
of the customer sample are presented in Table 1.
The one item missing from the CBECS-based agent

sample data is an investment criterion. Values for this
missing data item were imputed for each agent record using
survey results for 2400 Arkansas commercial sector utility
customers. The 1994 Arkansas survey asked a question
designed to elicit the willingness of decision makers to trade
off future savings for current investments. The average
payback requirement of this sample is 1.5 years, consistent
with the 1.4 year firm average reported in Anderson and
Newell (2002). Values for the missing CBECS payback
variables were developed with a ‘‘nearest-neighbor’’
imputation approach that makes a random draw from
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the Arkansas survey responses in a neighborhood defined
by the agent’s business type and size as measured by the
number of employees. Since each agent, i, in the micro-
simulation sample reflects an additional wi agents in the
population determined by the weight associated with that
agent, an additional wi agents are generated for each of the
1549 original agents. Each agent in the wi subset is identical
except that payback requirements are determined with
random draws from appropriate neighborhoods in the
Arkansas survey. This process provides 12,912 agents for
the microsimulation process.

4.4. Rebound effect

Agents who adopt CHP systems realize energy cost
savings equivalent to that provided by an increase in
equipment efficiency, resulting in increases in energy
consumption. This efficiency-related response, or ‘‘re-
bound’’ effect, is generally assumed to be similar in total
impact to the short-run price elasticity (Greening and
Difiglio, 2000). The commercial building energy services
rebound elasticity is estimated to be �0.15 in the US
Department of Energy’s NEMS model (DOE, 2004). This
rebound price impact is applied as a partial-adjustment
process with a short-run (1st year) elasticity of �0.075 and
a long-run elasticity of �0.15. This adjustment reduces
CHP energy cost savings.

4.5. Utility rates

The LIPA Large General Service (LGS) and Standby
rate class schedules (Long Island Power Authority, 2004)
were applied to model electricity costs for each of the
agents. Basic LGS rates are differentiated by season with
charges of $0.0928/kWh and $9.99/kW in the summer
(June–September) and $0.0779/kWh and $8.88/kW in the
winter (January–May and October–December). The de-
mand charge ($/kW) is based on the maximum electricity
use in any 15-min period in the month. The standby charge
is composed of both ‘‘contract’’ and ‘‘as needed’’ charges
with a total charge of $4.92/kW applied to the maximum
15-min demand charge occurring in the current or previous
eleven months.13 A 2004 natural gas price of $8.30 per
million Btu was used in the analysis.14

The number of LIPA commercial utility customers is
assumed to grow by 1 percent per year over the forecast
horizon. This rate of growth is consistent with the
2-percent rate of electricity use growth in the commercial
13The ‘‘as needed’’ demand charge of $2.46 is applied to actual

maximum kW use during an interruption in CHP service; however, the

twelve month ‘‘ratchet clause’’ insures that one unanticipated 15-min CHP

outage will trigger this charge for an entire year.
142004 prices are used in this study as reasonable representations of

longer-term natural gas prices based on current Department of Energy

Mid-term forecasts. Additionally, the primary focus of this study is on the

impacts of standby demand charges, which are not tied to natural gas

prices.
sector reported in the LIPA Energy plan.15 A sample of
new agents is developed for each forecast year. The new
construction sample is composed of recently constructed
buildings from the original survey data weighted to reflect
the appropriate number of new utility customers.
4.6. Alternative cost-based standby rates

Under the baseline scenario presented in the next section,
the average CHP system size is 92 kW (about 15 times the
peak kW use of an average residence). The small size of
new CHP systems, the random nature of likely unexpected
CHP downtimes and spatial clustering of commercial
establishments permits a probabilistic approach to deter-
mining the cost of providing unexpected energy and
demand services to CHP service during unexpected systems
downtimes.
Most CHP prime mover specifications report average

downtimes of less than 10 percent. By scheduling required
maintenance during off-peak periods, unanticipated inter-
ruptions should be no more than 10 percent during periods
where capacity limits are approached, consequently, an
estimate of least cost backup rate schedule for widely-
distributed small CHP systems is specified as 10 percent of
the standard large general service demand charge plus
standard energy charges for kWh use to cover variable
costs. Resulting $0.999/kW summer and $0.888/kW winter
peak demand rates are substantially less than the current
LIPA rates of $4.92/kW. One important distinction
between these rates is that the probabilistically determined
rates require a sufficient (future) population of CHP
systems to take advantage of the random nature of
unexpected outages while the LIPA rate is an attempt to
reflect costs given the current population of CHP systems.
A ‘‘chicken and egg’’ problem exists here with CHP
advocates arguing that long-run system cost optimization
can be achieved only with current pricing that represents
these longer-run conditions. Not surprisingly, utilities are
more concerned with immediate revenue and revenue
neutrality issues. The long-run standby rate argument is
appropriate only if these rates result in the kind of
clustered, small CHP population characteristics assumed
above.
The issue of long-run system cost optimization men-

tioned above is a reminder that appropriate standby rate
design should take into account all of the costs and benefits
associated with CHP systems including avoided transmis-
sion and distribution costs, emissions reductions and grid
stability. The methodology developed in this study can be
extended to incorporate these items; however, their
consideration is beyond the scope of the current study.
The focus at this time examines the impact of the difference
15Commercial sector electricity demand increases over time as a result of

new commercial construction and increases in electricity intensity over

time, primarily caused by increased use of computer, office and other

miscellaneous equipment (Jackson, 1986, 1994).
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Table 2

CHP adoption summary resultsa

Simulation

year

Current LIPA rates Cost-based rates Difference

Adopters CHP kW

capacity

Annual CHP

savings (million $)

Adopters CHP kW

capacity

Annual CHP

savings (million $)

Adopters CHP kW

capacity

Annual CHP

savings (million $)

Baseline scenario

5 14 47,869 86 419 169,838 212 405 121969 126

10 84 92,218 146 1962 260,662 313 1878 168444 167

15 526 163,551 212 2664 276,039 331 2138 112488 119

20 782 176,746 274 2806 276,289 356 2024 99543 82

25 913 178,167 289 3012 276,213 384 2099 98046 95

Alternative scenario 1

5 3 17,651 23 130 76,812 110 127 59161 87

10 20 57,042 99 470 167,464 220 450 110422 121

15 32 69,362 118 818 198,023 259 786 128661 141

20 40 72,773 124 1156 210,103 283 1116 137330 159

25 43 75,120 129 1324 212,161 295 1281 137041 166

Alternative scenario 2

5 2 14,708 25 93 64,750 83 91 50042 58

10 4 32,048 57 181 101,991 147 177 69943 90

15 17 50,707 93 255 127,697 191 238 76990 98

20 23 56,320 101 290 132,431 197 267 76111 96

25 25 58,014 103 308 133,502 202 283 75488 99

Cellular automata parameters for alternative forecasts

Baseline Alt 1 Alt 2

Knowledge levels 5 8 12

Neighborhood size 80 40 20

Increase in sales contacts (%) 50 10 0

Cellular automata parameters values used in factorial experimental design

Knowledge levels 2, 5, 8, 12

Neighborhood size 20, 40, 80, 100, 200

Increase in sales contacts (%) 100, 50, 10, 0

aLIPA LGS electricity rates for 2004 include demand charges of $9.99/kW summer (June–September) and $8.88/kW winter and energy charges of

$0.0928/KWh and $0.0779/KWh summer and winter, respectively. Standby demand charges are $4.92/kW according to the current tariff and $0.999/kW

summer and $0.888/kW winter for the cost-based rates.
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between the current LIPA standby rate and a long-run
cost-based CHP rate16 with respect to the diffusion of CHP
technologies.
5. Analysis results

The experimental design used to ‘‘net-out’’ the impact of
alternative standby rates includes four knowledge levels,
five neighborhood sizes and four annual percentage
increases in sales contacts to describe possible empirical
representations of information dissemination and knowl-
edge accumulation for a total of 80 experimental treat-
ments (See Table 2). Experiment results indicate that the
$4.00/kw/month differential between current standby rates
and the cost-based estimate of cost of service have a
16The long-run rate is defined as reflecting the system cost of providing

generation and distribution capacity to a sizeable number of appropriately

clustered CHPcustomers.
significant impact on CHP diffusion and utility customer
energy costs.
Results of three of the experimental treatments are

included in this section. A ‘‘most likely’’ baseline scenario
was selected to reflect the general utility industry view of a
slow (20 year) market penetration scenario, given current
standby rate specifications. Diffusion paths with slower
penetration showed the smallest cost impacts; conse-
quently, results of the slowest penetration treatment
considered feasible are included to show the most limited
impact. An additional forecast with a diffusion path
between the baseline and the slowest diffusion path is
presented to illustrate results between the moderate and the
slowest case.
The baseline CA specification required agents to pass

through five stages of knowledge accumulation and sales
contacts were allowed to grow at a rate of up to fifty
percent per year. Neighborhoods included eighty agents
closest in total employment within the same business
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Fig. 5. CHP generating capacity—baseline scenario.
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category. The model was run with current LIPA standby
rates and cost-based rates described in the previous section.
The resulting forecasts are shown in Figs. 4 and 5. The
‘‘current LIPA rate’’ series shows the diffusion of the
number of CHP systems and the diffusion of CHP kW
capacity (total avoided central plant kW of all CHP
systems) under current LIPA standby rates for a 25 year
horizon. Approximately 20 years are required for CHP
technologies to approach their asymptotic values under
current LIPA standby rates.17 CHP capacity increases
more rapidly than number of installations because early
adopters tend to have larger facilities. Greater new
technology adoption by larger firms has been noted in
previous studies and attributed to many factors18; however,
the impact of sales activity targeted to larger customers and
the higher proportion of large customers with onsite energy
17These are technically not asymptotic values because the stock of

agents grows each year; consequently, all of the series have an upward

trend over time.
18Easier access to capital markets, better financing rates, and more

sophisticated decision-making have been identified in previous analysis.

Sales targeting large customers is an obvious supplier profit-maximizing

strategy that has been observed in the CHP market (Jackson, 2005).
engineering expertise are sufficient here to provide similar
empirical results.
The ‘‘cost-based LIPA rate’’ series show number and kW

capacity of CHP systems under the cost-based rate
described above. The difference between the ‘‘current
LIPA rate’’ and ‘‘cost-based LIPA rate’’ series shows the
impact of excessive standby rates (relative to the long-run
cost-based rates). These model forecasts indicate that
switching to cost-based rates would generate an additional
115,000 kW of customer-generated power by the fourth
year. This capacity is comparable to the size of a small
central generating plant and is accompanied by an
approximately equal amount of heat energy supplied for
space heating, water heating and other thermal loads rather
than being exhausted to the environment. The difference
between the current and the cost-based standby rate
scenarios increases to approximately 170,000 kW in year
nine.
The ‘‘market potential’’ series in the figures shows CHP

installations that would be installed if all utility customer
agents immediately reached the knowledge threshold
required to make a purchase decision.19 This market
potential is considerably smaller than the ‘‘technical
potential’’ measures used in most studies because agents
in the current model adopt CHP systems only if the
payback meets each agent’s criterion, which, as indicated
earlier varies across agents with an average of about 1.5
years. By comparison, the DOE, 2002 study used a 10-year
payback criterion to evaluate CHP potential. Under
current LIPA rates, about 28 percent of potential sites,
representing approximately 60 percent of potential CHP
kW capacity, undertake a CHP installation in the 25-year
forecast. Under this diffusion path most smaller agents are
not ‘‘found’’ by sales targeting activities and do not have
sufficient knowledge to initiate the purchase process
themselves. Under the cost-based standby rates most of
the market potential is realized (90 percent of potential
sites representing 96 percent of potential CHP capacity).
Evaluating energy and cost impacts for slower and less

complete diffusion scenarios also shows significant standby
rate impacts as indicated by the two pairs of curves in
Fig. 6 (the area between the current and cost-based rates
for each alternative scenario shows the rate impact).
Neighborhood size and rate of increase in sales contacts
were reduced and number of sales contacts required to
reach the knowledge threshold was increased to provide
slower diffusion paths (see Table 2). These parameter
changes substantially reduced the total adoption of CHP
technologies. Under the slowest diffusion scenario, an
average of one system adoption occurs per year through
the forecast period with only the largest, and most
profitable, project undertaken. About 20 percent of the
potential kW capacity is actually achieved.
19By way of reference, this maximum market potential is a relatively

small fraction (10 percent) of total LIPA commercial customer kW

capacity requirements.
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Fig. 7 shows baseline energy cost savings for CHP
customers along with utility revenue losses resulting with a
cost-based rate. Utility customer savings reach an annual
peak of $180 million (US) while LIPA utility losses are no
more than $8.3 million. The discounted annual savings in
utility customer energy costs is $ 2137 million over the 25
year period while utility lost revenue is $ 99 million. That
is, revenue neutrality could be achieved and still provide a
net savings to utility customer of $ 2038 million with a cost-
based rate.

The results of all 80 simulations show that diffusion
impacts are less with a slower diffusion process. Fig. 6
shows that the slowest diffusion treatment results in
70,000 kW of unachieved CHP capacity. The discounted
utility customer annual savings in this minimum impact
scenario show is $ 1361 million over the 25 year period
while utility lost revenue is $ 51 million.

One of the most interesting findings of this agent-based
analysis is that the application of current LIPA standby
rates is likely to keep the population of CHP customers
small enough to limit the ‘‘neighborhood’’ information
dissemination and knowledge acquisition impacts and to
prevent the achievement of a sufficient number of clustered
CHP applications required to take advantage of the
probabilistic nature of unexpected CHP downtimes. How-
ever, when standby rates are specified to reflect the
advantages of a large number of clustered applications,
the adoption required to match this premise is likely to be
achieved.
These and similar results from all 80 experimental

treatments determined with the factorial experimental
design indicate that regardless of the diffusion process
excessive standby rates, relative to their long-run cost-
based values, can be expected to have a significant impact
on the diffusion of CHP technologies, to limit the value of
the random nature of unexpected CHP downtimes to the
utility system and to impose considerable costs on
customers who would have adopted these technologies.
To examine sensitivity of the results to increased initial

CHP costs reflecting agent valuation of grid attributes and
other factors, DOE (2002) cost estimates were increased in
two alternative simulations. An initial system cost increase
of 20 percent reduced the number of systems to 75 percent
and the total kW CHP capacity to 84 percent of the
baseline. Initial system cost increase of 40 percent reduced
the number of systems to 52 percent and the total kW CHP
capacity to 66 percent of the baseline. These results indicate
that any reasonable agent valuation of grid attributes will
not change the analysis conclusions.
It also should be noted that CHP-related distribution

system and emissions benefits have not been included in
this analysis; monetization of these benefits in the form of
incentives to CHP customers would increase the CHP
diffusion and capacity contributions beyond the baseline
results.

6. Summary and conclusions

The extent to which combined heat and power (CHP)
technolgy diffusion is limited by current regulatory
practices as opposed to reflecting traditional new technol-
ogy diffusion and energy-related investment patterns has
important policy implications. CHP systems can poten-
tially offer a significant opportunity to improve energy
efficiency and reduce emissions.
This study develops and applies a new analytical

framework to separate the impacts of standby rates from
the diffusion process. The modeling methodology extends
microsimulation techniques to include endogenous agent
interaction with a cellular automata process that reflects
the dissemination of new technology information and the
accumulation of knowledge required to consider the
purchase of these technologies. By viewing each simulation
of the model as an experimental treatment where alter-
native values of neighborhood size, knowledge levels and
sales activity are developed with a factorial experimental
design, the analysis is able to systematically separate the
impacts of standby rate differentials from the underlying
diffusion process for alternative diffusion paths.
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The Long Island Power Authority (LIPA) service area
was selected to conduct an example analysis. Results for
the LIPA study area find that excessive current standby
rates can be expected to significantly reduce the diffusion of
new CHP technologies regardless of diffusion dynamics.
Total additional costs attributable to excessive standby
rates are estimated to be $2.1 billion over 25 years under a
baseline scenario and $1.4 billion under the least costly
alternative diffusion scenario examined in the study.

Similarity in relationships between the LIPA study area
and utility service areas in California and the Northeastern
states suggests that analyses of these service areas are likely
to show similar results with the following important policy
implications. Standby rates designed to achieve immediate
utility rate revenue neutrality or to reflect immediate,
rather than longer run, distribution benefits are likely to
limit the diffusion of CHP systems to such an extent that
customer and utility system benefits of a large number of
spatially clustered small systems are never realized. The
costs of these shortsighted rate design objectives are
substantial both in terms of electric system efficiency and
energy costs for potential CHP customers.
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